

Can we use remote sensing to identify wetlands in Missouri??

WHAT IS SATELLITE REMOTE SENSING?

- Each object reflects or emits electromagnetic radiation (ER), depending on its physical characteristics.
- A sensor on a satellite collects this ER reflected from an object on the earth's surface.
- The *value* for the ER for an object is its "signature."

WHY REMOTE SENSING?

- Collects large amounts of data at one time.
 - Some scenes may cover hundreds of ground miles!
- Collects data in-situ.
- Less expensive than areal photography or collecting field data.
- Data is "real-time"
- Data is collected at regular intervals
- Can perform analysis for multiple projects

Other Studies

- Jensen et al. (1995) used remote sensing to detect aquatic macrophyte changes in the everglades
- Coleman et al. Assessed wetlands in a national forest to aid in timber sales
- Sader et al. (1995) compared satellite imagery for forested wetlands in Maine.
- Lunetta and Balogh (1999) explored using imagery to aid in detection of jurisdictional wetlands in Maryland and Delaware.
- No such studies have been done in Missouri thus far

Wetland Image Analysis Project (WIAP)

- Develop a "cookbook" for other environmental professionals.
- We will use remotely sensed data and attempt to identify 4 types of wetlands:
 - Emergent
 - Shrub/scrub
 - Forested
 - Farmed

Matrix

- We will develop a matrix that evaluates various aspects of the platforms.
 - Cost
 - Resolution
 - Processing time
 - Image quality
 - Frequency of flight patterns
 - Number of bands
 - As well as many more.....

Emergent wetland

• Includes species such as: smartweed, lotus, cattails, bullrush, floating primrose, etc.

Shrub/scrub wetland

• Includes species such as black willow, sandbar willow, and cottonwood.

Forested wetland

- Evaluates riparian area forests
- Ancillary data may include soils and NWI maps.
- Includes species such as black willows, ash, and cottonwood

Farmed wetland

- Areas
 currently
 being used
 for row crops
 production.
- will also use ancillary data such as NWI maps, soil maps, and TM 5 images.

Wetland sites

• Wetlands range from highly managed (MDC) to more "natural" (DNR Parks, F&WS).

• Must balance between homogeneous wetland areas and those that exhibit heterogeneity.

Study area location

Study area

Field Methods

• Utilized areal photos, soil/NWI maps, and expertise of local managers for potential wetland areas.

• Field work began by locating potential

wetland sites.

GPS data

- GPS coordinates were collected for each study site and then downloaded into a GIS data base.
- This would give us exact locations when viewing the imagery

Wetland delineation

- Wetlands were
 delineated according
 to the 1987 ACOE
 Wetland Delineation
 Manual
- Wetland type and dominant species were noted and recorded.
- This data then put into a GIS

•

•

Eagle Bluffs

Van Meter State Park

Delineation sites
Park boundary

0.5 0 0.5 1 Miles

Image platforms

- We will obtain 4 types of imagery:
 - TM 7 30m x 30m resolution
 - 15 meter panchromatic
 - SPOT 20m x 20m
 - IRS Indian 5m x 5m
 - IKONOS 1m x 1m

TM Landsat 7 (30m)

TM Landsat 7 (30m)

SPOT (20m)

SPOT (20m)

IRS Indian (5m)

IRS Indian (5m)

Landsat, SPOT, IRS

Image processing

- We now have the necessary field data to begin image processing.
- We will overlay our study sites on the image and choose pixel by pixel the areas of wetland
- These pixels will then be used to "train" the software.
- The software will search other areas for similar "values".

Accuracy assessment

- Once the software identifies wetland types, we will field check these.
- Coordinates will be obtained from the GIS of possible wetland areas
- We will the use a GPS unit to find the exact location on the ground

Continued.....

• We will then note whether the software correctly or incorrectly identified the wetland type, perhaps also noting dominant vegetation.

• If error is to large, we will need to retrain the software

The Future??

- Results could be used for a statewide inventory of wetlands.
- Managers could use remote sensing to see the effects of wetland management over time.
- Track wetland loss/change.
- Locate possible mitigation sites

Thanks!!!!

• Thanks to MDC, USF&WS, DNR State Parks for allowing access to study sites.

• Also, thanks to EPA Wetland Staff, MoRAP, and the DNR Water Resources Program.

• See poster display more further information also!

Contacts/Questions??

- MoDNR/GSRAD/Water Resources Program
 - mowaters@dnr.state.mo.us
 - 1-800-334-6946 Option 6

